

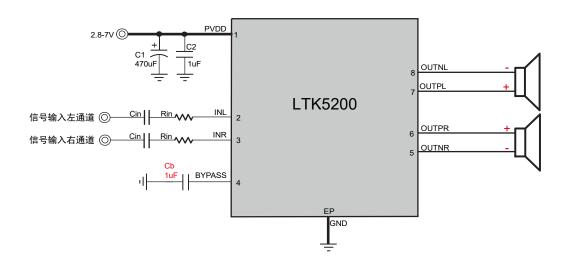
LTK5200 2×3W 双声道D类立体声音频功率放大器

■ 概述

LTK5200 是一款 4Ω-3W、双声道 D 类音频功率 放大器。LTK5200 采用高耐压工艺,耐压可达 7V。LTK5200 可以提供高于 90%的效率,新型 的无滤波器结构可以省去传统 D 类放大器的输 低通滤波器,LTK5200 独有的 DRC(Dynamic range control)技术,降低了大功率输出时,由 于波形切顶带来的失真,相比同类产品,动态反 应更加出色。LTK5200 采用 ESOP-8 封装。

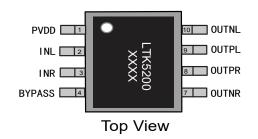
■ 应用

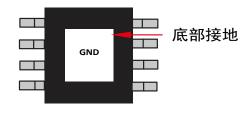
- 桌面音箱、USB 对箱
- 扩音器等


■ 特性

- 输入电压范围 2.8V-7V
- 一线脉冲控制
- 无滤波的 D 类低静态电流和低 EMI
- FM模式无干扰
- 优异的爆破声抑制电路
- 超低底噪、超低失真
- 10% THD+N, VDD=5V, 4Ω负载下提供高 达 2×3W 的输出功率
- 1% THD+N, VDD=5V, 4Ω负载下 提供高 达 2×2.4W 的输出功率
- 过温保护、短路保护
- 封装形式 ESOP-8

■ 封装


芯片型号	封装类型	封装尺寸
LTK5200	ESOP-8	


■ 典型应用图

管脚说明及定义

Bottom View

管脚编号	管脚名称	Ю	功 能
1	PVDD	I	电源正端
2	INL	I	左通道输入
3	INR	I	右通道输入
4	BYPASS	IO	内部模拟基准源,接旁路电容下地
5	OUTNR	О	右通道反向输出
6	OUTPR	О	右通道正向输出
7	OUTPL	О	左通道正向输出
8	OUTNR	О	左通道反向输出
9	GND	GND	芯片底部露铜接地端,电源负端

最大极限值

参数名称	符号	数值	单位
供电电压	V_{DD}	7V(MAX)	V
存储温度	T_{STG}	-65°C-150°C	°C
结温度	T_J	160°C	°C

■ 推荐工作范围

Ī	参数名称	符号	数值	单位
ĺ	供电电压	$ m V_{DD}$	3-6.7V	V
Ī	工作环境温度	T_{STG}	-40°C to 85°C	V
Ī	结温度	T_{J}	-	°C

ESD 信息

参数名称	符号	数值	单位
人体静电	НВМ	±2000	V
机器模型静电	CDM	±300	V

■ 基本电气特性

A_V=20dB, T_A=25℃,无特殊说明的项目均是在VDD=5V,4Ω+33uH条件下测试:

描述	符号	测证	式条件	最小值	典型值	最大值	单位
静态电流	I_{DD}	VI	DD =5V		18	23	mA
静态底噪	Vn	VDD=5V ,A	V=20DB,Awting		130		uV
D类频率	F_{SW}	VDD)=5V		750		kHz
输出失调电压	V_{os}	$V_{IN}=$	0V		10		mV
启动时间	T_{start}	VDD=5V,	Bypass=1uF		170		ms
增益	Av	R _{IN} =27k			≈20.5		dB
电源关闭电压	Vdd _{EN}	-			<1.6		V
电源开启电压	Vdd_{open}		-		>2.8		V
过温保护	O _{TP}				180		°C
静态导通电阻	D	$I_{DS}=0.5A$	P_MOSFET		150		m Ω
閉心寸週电阻 	$R_{ m DSON}$	$V_{GS}=4.2V$	N MOSFET		120		
内置输入电阻	R_{s}				7.5K		kΩ
内置反馈电阻	R_{f}				185K		kΩ
效率	η_{C}				90.3		%

● 功率参数

Av=20dB, T_A=25℃,无特殊说明的项目均是在VDD=5V,4Ω条件下测试:

参数	符号	测试条件	最小值	典型值	最大值	单位	
		THD+N=10%,	$V_{DD}=7V$	-	6.6	-	
		$f=1kHz$, $R_L=4\Omega$;	V _{DD} =6V	-	4.9	-	W
			$V_{DD}=5V$		3.2		٧٧
输出功率	Po		$V_{DD}=4.2V$		2.2		
		THD+N=10%,	V _{DD} =7V	-	7.9	-	
		$f=1kHz$, $R_L=3\Omega$;	V _{DD} =6V		5.6		W
			$V_{DD}=5V$		4.1		٧٧
			$V_{DD}=4.2V$	-	2.9	ı	
总谐波失真加噪	THD+N	$V_{DD}=5VP_0=1W,R_L=4\Omega$	f=1kHz	_	0.08	-	%
声							

■ 性能特性曲线

● 特性曲线测试条件(T_A=25°C)

描述	测试条件	编号
Input Amplitude VS. Output Amplitude	VDD=5V,RL= 4Ω +33uH	图1
Output Power VS. THD+N	RL=3 Ω +22UH,A $_{V}$ =20DB	图2
	RL= 4Ω +33UH, A_V =20DB	图3
Frequency VS.THD+N	VDD=5V,RL=4 Ω ,A _V =20DB,PO=1W, Awting	图4
Input Voltage VS. Maximum Output Power	RL= 4Ω +33UH,THD= 10%	图5
Frequency Response	VDD=5V,RL=4Ω	图6

● 特性曲线图(T_A=25°C)

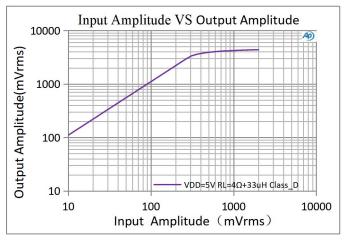


图1: Input Amplitude VS. Output Amplitude

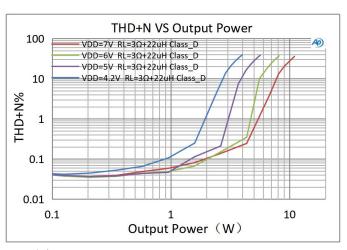


图2: THD+N VS .Output Power

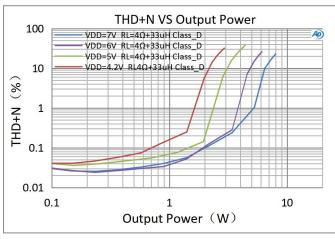


图3: THD+N VS .Output Power

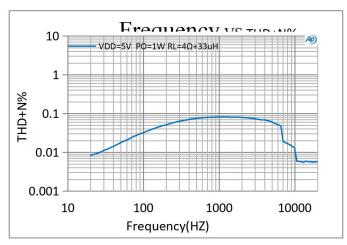


图4: Frequency VS.THD+N

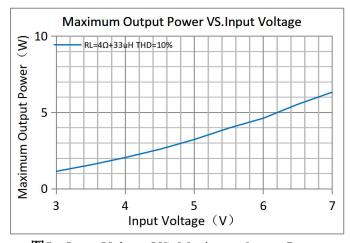


图5: Input Voltage VS. Maximum Output Power

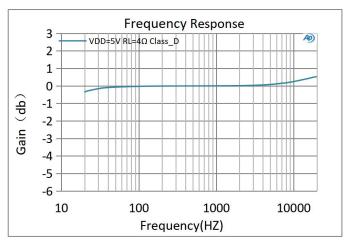


图6: Frequency Response

■ 应用说明

● 功放增益控制

LTK5200的增益均可通过RIN调节。

$$A_{V} = 2 \times \frac{185 \, K\Omega}{(R_{IN} + 7.5 \, K\Omega)}$$

Av为增益,通常用dB表示,上述计算结果单位为倍数、20Log倍数=dB。

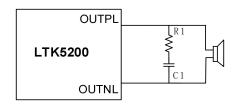
RIN电阻的单位为kΩ、185kΩ为内部反馈电阻(R_F),7.5kΩ为内置串联电阻(R_S),RIN由用户 根据实际供电电压、输入幅度、和失真度定义。 如RIN=27k时,=10.5倍、 A_V =20.4dB输入电容(CIN)和输入电阻(RIN)组成高通滤波器,其截止频率为:

$$f_{\scriptscriptstyle C} \, = \, \frac{1}{2\pi \, \times \left(R_{\scriptscriptstyle IN} \, + \, 7.\,\, 5K\right) \times \, C_{\scriptscriptstyle IN}}$$

Cin电容选取较小值时,可以滤除从输入端耦合入的低频噪声,同时有助于减小开启时的POPO

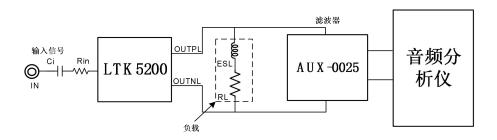
● Bypass电容

Byp电容是非常重要的,该电容的大小决定了功放芯片的开启时间,同时Byp电容的大小会影响芯片的电源抑制比、噪声、以及POP声等重要性能。建议将该电容设置为1uF,该Byp的充电速度速度比输入信号端的充电速度越慢,POP声越小。


EMI处理

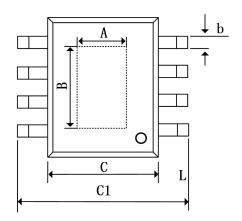
对于输出走线较长或靠近敏感器件时,建议加上磁珠和电容,能有效减小EMI。器件靠近芯片放置。

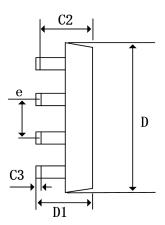
● RC缓冲电路

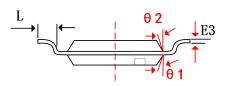

如喇叭负载阻抗值较小时,建议在输出端并一个电阻和一个电容来吸收电压尖峰,防止芯片工作异常。电阻推荐使用: 2Ω - 5Ω , 电容推荐: 500pF-10nF。

■ 测试方法

在测试D类模式时必须加滤波器测试。AUX-0025为滤波器。为了测试数据精准并符合实际应用,在RL 负载端串联一个电感,模拟喇叭中的寄生电感。




■ PCB设计注意事项


- ▶ 电源供电脚(PVDD)走线尽量粗,如电源走线中必须打过孔应使用多孔连接,并加大过孔内径,不可使用单个过孔直接将电源走线连接,电源电容尽量靠近管脚放置。
- ➤ 输入电容(Cin)、输入电阻(Rin)尽量靠近功放芯片管脚放置,走线最好使用包地方式,可以有效的抑制其他信号耦合的噪声。
- ▶ Bypass 电容尽量靠近芯片管脚放置。
- ▶ LTK5200 的底部散热片具有电气属性必须与 PCB 的 GND 相连,用于芯片 GND 和电源 GND 的导通,同时建议 PCB 使用大面积敷铜来连接芯片中间的散热片,并有一定范围的露铜,帮助芯片散热。
- ▶ LTK5200 输出连接到喇叭的管脚走线管脚尽可能的短,并且走线宽度需在 0.4mm 以上

■ 芯片封装 ESOP-8

字符	Dimensions In Millimeters				Dimensions In Inches		
	Min	Nom	Max	Min	Nom	Max	
A	2.31	2.40	2.51	0.091	0.094	0.098	
В	3.20	3.30	3.40	0.126	0.129	0.132	
b	0.33	0.42	0.51	0.013	0.017	0.020	
C	3.8	3.90	4.00	0.150	0.154	0.157	
C1	5.8	6.00	6.2	0.228	0.235	0.244	
C2	1.35	1.45	1.55	0.053	0.058	0.061	
С3	0.05	0.12	0.15	0.004	0.007	0.010	
D	4.70	5.00	5.1	0.185	0.190	0.200	
D1	1.35	1.60	1.75	0.053	0.06	0.069	
e	1.270(BSC) 0				050(BSC)	_	
L	0.400	0.83	1.27	0.016	0.035	0.050	

声明:深圳市思泽远电子有限公司保留在任何时间、不另行通知的情况下对规格书的更改权。 深圳市思泽远电子有限公司提醒:请务必严格应用建议和推荐工作条件使用。如超出推荐工作条件以及不按应用建议使用,本公司不保证产品后续的任何售后问题.